A neuroengenharia como interface para o desenvolvimento terapêutico

Conteúdo do artigo principal

Ilton Santos da Silva
Bianca Nichele KUSMA
Juliana Hetzel VALGINSKI
Márcia Regina PINCERATI

Resumo

Introdução: As células do sistema nervoso, principalmente os neurônios, comunicam-se através de neurotransmissores e trocas iônicas que geram correntes elétricas ao receberem um estímulo externo ou quando o próprio sistema transmite informações através de impulsos nervosos. Considerando o princípio de que essas informações podem ser capturadas, decodificadas e utilizadas por dispositivos para restaurar funções motoras e sensoriais, o campo da neuroengenharia avançou significativamente nos últimos anos. Por ser uma área de estudo multidisciplinar, seu desenvolvimento exige o alinhamento do conhecimento do funcionamento elétrico do sistema nervoso com a engenharia e os circuitos, a fim de otimizar as neuropróteses para serem cada vez mais eficientes, duráveis e seguras.
Objetivos: Mapear o estado da arte em neuroengenharia e suas nuances com base na literatura científica, e identificar os principais desenvolvimentos, desafios e oportunidades no futuro da área.
Métodos: Revisão de literatura sobre a combinação de engenharia e neurociência em aplicações terapêuticas. Os textos em inglês publicados entre 2012 e 2022, que atendessem aos critérios de inclusão pré-determinados, foram considerados/aceitos utilizando os seguintes termos para a pesquisa: “robotic prosthesis, neuroengineering, eletrofisiologia, movimento robótico, decodificação neural, engenharia do sistema nervoso, neurofisiologia, prótese neural e neuroanatomia”.
Resultados: A revisão demonstrou que existem abordagens terapêuticas estabelecidas baseadas na neuroengenharia, como a estimulação cerebral profunda para aliviar os sintomas de Parkinson. Porém, para algumas doenças neurodegenerativas e lesões do sistema nervoso, as neuropróteses com foco terapêutico ainda estão em fase experimental ou necessitam de ajustes para atender às demandas dos usuários e assim alcançar maior aceitação e precisão.
Conclusão: Apesar dos inúmeros desafios enfrentados nesta fase inicial de desenvolvimento da área, os avanços nas pesquisas já são observáveis devido à evolução tecnológica que permite a implementação de inteligência artificial, microeletrodos mais modernos e melhor compreensão do sistema e adaptação entre organismo e máquina.

Detalhes do artigo

Seção
Artigo de Revisão

Referências

Thakor NV. Translating the Brain-Machine Interface. Science Translational Medicine. 2013;5(210):210ps17–7. Doi: 10.1126/scitranslmed.

Andersen RA, Musallam S, Pesaran B. Selecting the signals for a brain–machine interface. Current Opinion in Neurobiology. 2004;14(6):720–6. Doi: 10.1016/j.conb.2004.10.005

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485:372–5. Doi: 10.1038/nature11076

Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, et al. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sciences. 2022;12(11):1578. Doi: 10.3390/brainsci12111578

Ienca M, Kressig RW, Jotterand F, Elger B. Proactive Ethical Design for Neuroengineering, Assistive and Rehabilitation Technologies: the Cybathlon Lesson. Journal of NeuroEngineering and Rehabilitation. 2017;14(1):115. Doi: 10.1186/s12984-017-0325-z

Lebedev MA, Tate AJ, Hanson TL, Li Z, O’Doherty JE, Winans JA, et al. Future developments in brain-machine interface research. Clinics. 2011;66(Suppl 1):25-32. Doi: 10.1590/S1807-59322011001300004

Patil PG, Turner DA. The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics. 2008;5(1):137-46. Doi: 10.1016/j.nurt.2007.11.002

Barha CK, Nagamatsu LS, Liu-Ambrose T. Basics of neuroanatomy and neurophysiology. Handbook of clinical neurology. 2016;138:53-68. Doi: 10.1016/B978-0-12-802973-2.00004-5

Warwick K. Neuroengineering and neuroprosthetics. Brain and Neuroscience Advances. 2018;2: 2398212818817499. Doi: 10.1177/2398212818817499

Potter SM, El Hady A, Fetz EE. Closed-loop neuroscience and neuroengineering. Frontiers in Neural Circuits. 2014;8:115. Doi: 10.3389/fncir.2014.00115

Cheng G, Ehrlich SK, Lebedev M, Nicolelis MAL. Neuroengineering challenges of fusing robotics and neuroscience. Science Robotics. 2020;5(49). Doi: 10.1126/scirobotics.abd1911

Thakor NV. In the Spotlight: Neuroengineering. IEEE Reviews in Biomedical Engineering. 2009; 2:18-20. Doi: 10.1109/RBME.2008.2008231

Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinson’s Disease. 2018;8(s1):S3–8. Doi: 10.3233/JPD-181474

Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics. 2019;16(1):105–18. Doi: 10.1007/s13311-018-00705-0

Seppich N, Tacca N, Chao KY, Akim M, Hidalgo-Carvajal D, Pozo Fortunić E, et al. CyberLimb: a novel robotic prosthesis concept with shared and intuitive control. Journal of NeuroEngineering and Rehabilitation. 2022;19(1):41. Doi: 10.1186/s12984-022-01016-4

Neumann WJ, Köhler RM, Kühn AA. A practical guide to invasive neurophysiology in patients with deep brain stimulation. Clinical Neurophysiology. 2022;140:171–80. Doi: 10.1016/j.clinph.2022.05.004

Cota VR, Moraes MFD. Editorial: Engineered neuromodulation approaches to treat neurological disorders. Frontiers in Neuroscience. 2022;16. Doi: 10.3389/fnins.2022.1038215

Fiorin FS, e Silva MA, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sciences. 2021;285:119972. Doi: 10.1016/j.lfs.2021.119972

Chen S, Wu J, Cai A, Gonzalez N, Yin R. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach. Neuroscience Research. 2020;152:59–65. Doi: 10.1016/j.neures.2020.01.005

Moxon KA, Foffani G. Brain-machine interfaces beyond neuroprosthetics. Neuron. 2015;86(1):55–67. Doi: 10.1016/j.neuron.2015.03.036

Adewole DO, Serruya MD, Harris JP, Burrell JC, Petrov D, Chen HI, et al. The Evolution of Neuroprosthetic Interfaces. Critical reviews in biomedical engineering. 2016;44(1-2):123–52. Doi: 10.1615/CritRevBiomedEng.2016017198

Cavanagh JF. Electrophysiology as a theoretical and methodological hub for the neural sciences. Psychophysiology. 2019;56(2). Doi: 10.1111/psyp.13314

Coscia M, Wessel MJ, Chaudary U, Millán J del R, Micera S, Guggisberg A, et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain. 2019;142(8):2182–97. Doi: 10.1093/brain/awz181

Shokoueinejad M, Park DW, Jung YH, Brodnick SK, Novello J, Dingle A, et al. Progress in the Field of Micro-Electrocorticography. Micromachines. 2019;10(1):62. Doi: 10.3390/mi10010062

Formica D, Schena E. Smart Sensors for Healthcare and Medical Applications. Sensors. 2021;21(2):543. Doi: 10.3390/s21020543

Johson MD, Lim HH, Netoff TI, Conolly AT, Johnson N, Abhrajeet R, et al. Neuromodulation for Brain Disorders: Challenges and Opportunities. IEEE Transactions on Biomedical Engineering. 2013;60(3):610-24. Doi: 10.1109/TBME.2013.2244890

Steinmetz NA, Koch C, Harris KD, Carandini M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology. 2018; 50:92-100. Doi: 10.1016/j.conb.2018.01.009

Voitiuk K, Geng J, Keefe MG, Parks DF, Sanso SE, Hawthorne N, et al. Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments. Journal of Neural Engineering. 2021;12;18(6). Doi: 10.1088/1741-2552/ac310a

Opris I, Lebedev MA, Pulgar VM, Vidu R, Enachescu M, Casanova MF. Editorial: Nanotechnologies in Neuroscience and Neuroengineering. Frontiers in Neuroscience. 2020;14:33. Doi: 10.3389/fnins.2020.00033

Brunton BW, Beyeler M. Data-driven models in human neuroscience and neuroengineering. Current Opinion in Neurobiology. 2019; 58:21-9. Doi: 10.1016/j.conb.2019.06.008

Ghezzi D. Retinal prostheses: progress toward the next generation implants. Frontiers in Neuroscience. 2015; 9:290. Doi: 10.3389/fnins.2015.00290

Monaco AM, Giugliano M. Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein Journal of Nanotechnology. 2014;5:1849-63. Doi: 10.3762/bjnano.5.196

Fiani B, Reardon T, Ayres B, Cline D, Sitto SR. An Examination of Prospective Uses and Future Directions of Neuralink: The Brain-Machine Interface. Cureus. 2021;13(3). Doi: 10.7759/cureus.14192

He F, Lycke R, Ganji M, Xie C, Luan L. Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recording. iScience. 2020;23(8). Doi: 10.1016/j.isci.2020.101387

Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science. 2021;372(6539). Doi: 10.1126/science.abf4588

Bassett DS, Khambhati AN, Grafton ST. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity. Anual Review of biomedical engineering. 2017;19:327–52. Doi: 10.1146/annurev-bioeng-071516-044511

Cuevas-López A, Pérez-Montoyo E, López‐Madrona VJ, Canals S, Moratal D. Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors. 2022;22(10):3676. Doi: 10.3390/s22103676

Santaniello S, Gale JT, Sarma SV. Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2018;10(5):e1421. Doi: 10.1002/wsbm.1421

Bandara DSV, Gopura RARC, Hemapala KTMU, Kiguchi K. Development of a multi-DoF transhumeral robotic arm prosthesis. Medical Engineering & Physics. 2017; 48:131-41. Doi: 10.1016/j.medengphy.2017.06.034

Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D. Robotic Approaches for Rehabilitation of Hand Function After Stroke. American Journal of Physical Medicine & Rehabilitation. 2012;91(11 suppl 3):S242–54. Doi: 10.1097/PHM.0b013e31826bcedb

Jeong JW, Shin G, Park SI, Yu KJ, Xu L, Rogers JA. Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron. 2015;86(1):175–86. Doi: 10.1016/j.neuron.2014.12.035

Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nature Materials. 2021;20:925–39. Doi: 10.1038/s41563-021-00966-9

Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering. 2021;7:405-23. Doi: 10.1038/s41551-021-00683-3

Eapen BC, Murphy DP, Cifu DX. Neuroprosthetics in amputee and brain injury rehabilitation. Experimental Neurology. 2017;287:479–85. Doi: 10.1016/j.expneurol.2016.08.004

Ivanenko Y, Ferris DP, Lee K, Sakurai Y, Beloozerova IN, Lebedev M. Editorial: Neural Prostheses for Locomotion. Frontiers in Neuroscience. 2021;15. Doi: 10.3389/fnins.2021.788021

Panuccio G, Semprini M, Natale L, Buccelli S, Colombi I, Chiappalone M. Progress in Neuroengineering for brain repair: New challenges and open issues. Brain and Neuroscience Advances. 2018;2:2398212818776475. Doi: 10.1177/2398212818776475

Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience. 2017;18(4):222–35. Doi: 10.1038/nrn.2017.15