Análise imunoistoquímica do biomarcador Ciclina D1 nos carcinomas papilíferos de tireoide e bócios multinodulares
Conteúdo do artigo principal
Resumo
Racional: Os carcinomas papilíferos são os mais prevalentes e menos agressivos de tireoide (CPT). Em alguns casos, o diagnóstico é duvidoso e o prognóstico ruim. A busca de biomarcadores teciduais que permitam assegurar tanto o diagnóstico para casos indeterminados, quanto o prognóstico, identificando os casos de maior agressividade, têm sido estudadas nas últimas décadas.
Objetivo: Analisar a ciclina D1 nos CPT e nos bócios multinodulares (BMN) e verificar a correlação da marcação com as características clinicopatológicas.
Métodos: Foram selecionados 118 tecidos de pacientes adultos submetidos àa tireoidectomia por CPT e 40 BMN como grupo controle. Realizou-se imunocoloração tecidual com ciclina D1 com subsequente análise imunoistoquímica em ambos grupos, avaliando-se a expressão do marcador (intensidade e distribuição). No grupo dos CPT os dados da imunocoloração foram também cruzados com os dados clinicopatológicos.
Resultados: A maioria (93,3%) expressou a coloração da ciclina D1 com intensidades variadas (fraca, moderada e forte) e distribuição predominantemente difusa (71,2%). O grupo controle dos BMN, expressou coloração para ciclina D1 em 57,5%, com intensidade fraca (47,5%) e distribuição esparsa (37,5%). A diferença entre os grupos (estudo e controle) foi estatisticamente significante (p<0,001). No grupo dos CPT, os cruzamentos clinicopatológicos não evidenciaram diferenças quanto à idade, sexo, tipo e tamanho tumoral, estado linfonodal, focalidade e invasão angiolinfática.
Conclusão: A ciclina D1 foi expressa na grande maioria dos CPT sendo a distribuição difusa predominante. Não houve correlação entre a expressão delacom qualquer característica clinicopatológica dos CPT.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Referências
Instituto Nacional de Câncer do Ministério da Saúde (INCA). Rio de Janeiro: 2017.
Chitikova Z, Pusztaszeri M, Makhlouf AM, Berczy M, Delucinge-Vivier C, Triponez F, et al. Identification of new biomarkers for human papillary thyroid carcinoma employing NanoString analysis. Oncotarget. 2015;6(13):10978-93. DOI: 10.18632/oncotarget.3452
Cobin RH, Gharib H, Bergman DA, Clark OH, Cooper DS, Daniels GH, et al. AACE/AAES Medical/Surgical Guidelines for Clinical Practice: Management of Thyroid Carcinoma. Endocrine Pract. 2001 May;7(3):202-20. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1530891X20420142?via%3Dihub.
Kim TH, Park YJ, Lim JA, Ahn HY, Lee UK, Lee YJ, et al. The association of the BRAFV600E mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: A meta-analysis. Cancer. 2012;18(7):1764-73. DOI: 10.1002/cncr.26500
Bertagna F, Treglia G, Picardo A, Giubbini R. Diagnostic and Clinical Significance of F-18-FDG-PET/CT Thyroid Incidentalomas. J Clin Endocrinol Metab. 2012 Nov;97(11):3866-75. DOI: 10.1210/jc.2012-2390
Barbet J, Campion L, Kraeber-Bodéré F, Chatal JF. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2005;90(11):6077–84. DOI: 10.1210/jc.2005-0044
Giovanella L, Ceriani L, Maffioli M. Postsurgery serum thyroglobulin disappearance kinetic in patients with differentiated thyroid carcinoma. Head Neck. 2010;32(5):568–71. DOI: 10.1002/hed.21214
Giraudet AL, Ghulzan AA, Aupérin A, Leboulleux S, Chehboun A, Troalen F, et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158(2):239–46. DOI: 10.1530/EJE-07-0667
Miyauchi A, Kudo T, Miya A, Kobayashi K, Takamura Y, Higashiyama T, et al. Prognostic Impact of Serum Thyroglobulin Doubling-Time Under Thyrotropin Suppression in Patients with Papillary Thyroid Carcinoma Who Underwent Total Thyroidectomy. Thyroid. 2011;21(7):707–16. DOI: 10.1089/thy.2010.0355
Pesutić-Pisac V, Punda A, Gluncic I, Bedekovic V, Kragic AP, Kunac N. Cyclin D1 and p27 expression as prognostic factor in papillary carcinoma of thyroid: association with clinicopathological parameters. Croat Med J. 2008;49:643-9. DOI: 10.3325/cmj.2008.5.643
Bhaijee F, Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol. 2011;22:126-33. DOI: 10.1007/s12022-011-9170-y.
Seybt TP, Ramalingam P, Huang J, Looney SW, Reid MD. Cyclin D1 expression in benign and differentiated malignant tumors of the thyroid gland: diagnostic and biologic implications. Appl Immunohistochem Mol Morphol. 2012;20(2):124–30. DOI: 10.1097/PAI.0B013E31822D4783.
DeLellis RA, Lloyd RV, Heitz PU, Eng C. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon, France: IARC Press; 2004.
Antonaci A, Consorti F, Mardente S, Natalizi S, Giovannone G, Rocca CD. Survivin and cyclin D1 are jointly expressed in thyroid papillary carcinoma and microcarcinoma. Oncol Rep. 2008;20(1):63-7.
Lee SH, Lee JK, Jin SM, Lee KC, Sohn JH, Char SW, et al. Expression of cell-cycle regulators (cyclin D1, cyclin E, p27kip1, p57kip2) in papillary thyroid carcinoma. Otolaryngol Head Neck Surg. 2010;142(3):332-7. DOI: 10.1016/j.otohns.2009.10.050
Khoo MLC, Ezzat S, Freeman JL, Asa SL. Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J Clin Endocrinol Metab. 2002;87(4):1810-3. DOI: 10.1210/jcem.87.4.8352.
Khoo MLC, Beasley NJP, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2002;87(4):1814-18. DOI: 10.1210/jcem.87.4.8353
Lee JH, Hwang Y, Song R, Yi JW, Yu HW, Kim SJ, et al. Relationship between iodine levels and papillary thyroid carcinoma: A systematic review and meta-analysis. Head Neck. 2017 Aug;39(8):1711-8. DOI: 10.1002/hed.24797
World Health Organization (WHO). Assessment of the iodine deficiency disorders and monitoring their elimination. Geneva: WHO; 2007.
Franceschi S. Iodine intake and thyroid carcinoma: A potential risk factor. Exp Clin Endocrinol Diabetes. 1998;106 Suppl 3:S38-44.
Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94(5):1612-7. DOI: 10.1210/jc.2008-2390
Knobel M, Medeiros-Neto G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol. 2007;51(5):701-12.
Balta AZ, Filiz AI, Kurt Y, Sucullu I, Yucell E, Akin ML. Prognostic value of oncoprotein expressions in thyroid papillary carcinoma. Med Oncol. 2012;29(2):734–41. DOI: 10.1007/s12032-011-9969-x.
Brown RL, De Souza JA, Cohen EE. Thyroid cancer: Burden of illness and management of disease. J Cancer. 2011;2:193-9.
Shaha AR. Implications of Prognostic Factors and Risk Groups in the Management of Differentiated Thyroid Cancer. Laryngoscope. 2004;114(3):393-402.
Ito Y, Miyauchi A. Nonoperative management of low-risk differentiated thyroid carcinoma. Curr Opin Oncol. 2015 Jan;27(1):15-20. Disponível em: 622-201501000-00004.
Hartl DM, Leboulleux S, Ghuzlan AA, Baudin E, Chami L, Schlumberger M, et al. Optimization of staging of the neck with prophylactic central and lateral neck dissection for papillary thyroid carcinoma. Ann Surg. 2012;255(4):777-83. DOI: 10.1097/SLA.0b013e31824b7b68.
Nie X, Tan Z, Ge M, Jiang LH, Wang JF, Zheng CM. Risk factors analyses for lateral lymph node metastases in papillary thyroid carcinomas: A retrospective study of 356 patients. Arch Endocrinol Metab. 2016;60(5):492-99. DOI: 10.1590/2359-3997000000218.
Rotstein L. The role of lymphadenectomy in the management of papillary carcinoma of the thyroid. J Surg Oncol. 2009;99:186-88.
Tuttle RM. Papillary thyroid cancer. In: Post TW, editor. UpToDate. Waltham, MA: UpToDate Inc.; 2018. Disponível em: https://www.uptodate.com/contents/papillary-thyroid-cancer?source=bookmarks_widget#H13329960
Lloyd RV, Osamura RY, Kloppel G, Rosai J. WHO classification of tumours of endocrine organs. 4th ed. WHO Press; 2017.
Donnellan R, Chetty R. Cyclin D1 and human neoplasia. J Clin Pathol Mol Pathol. 1998;51(1):1-7.
Perisanidis C, Perisanidis B, Wrba F, Brandstetter A, Gazzar SE, Papadogeorgakis N, et al. Evaluation of immunohistochemical expression of p53, p21, p27, cyclin D1, and Ki67 in oral and oropharyngeal squamous cell carcinoma. J Oral Pathol Med. 2012;41(1):40-6. DOI: 10.1111/j.1600-0714.2011.01071.x
Sheyn I, Noffsinger AE, Helffelfinger S, Davis B, Miller MA, Fenoglio-Preiser CM. Amplification and expression of the cyclin D1 gene in anal and esophageal squamous cell carcinomas. Hum Pathol. 1997;28(3):270-6. DOI: 10.1016/s0046-8177(97)90123-4
Lazzereschi D, Sambuco L, Scalzo CC, Ranieri A, Mincione G, Nardi F, et al. Cyclin D1 and Cyclin E expression in malignant thyroid cells and in human thyroid carcinomas. Int J Cancer. 1998;76(6):806–11. DOI: 10.1002/(sici)1097-0215(19980610)76:6<806::aid-ijc7>3.0.co;2-1
Kovacs GL, Stelkovics E, Krenacs L, Gonda G, Goth M, Kovacs L, et al. Low level of cyclin D1 protein expression in thyroid microcarcinomas from an autopsy series. Endocrine. 2005;26(1):41-4. DOI: 10.1385/ENDO:26:1:041
Kovacs GL, Stelkovics E, Krenacs L, Gonda G, Goth M, Kovacs L, et al. Low level of cyclin D1 protein expression in thyroid microcarcinomas from an autopsy series. Endocrine. 2005;26(1):41-4. DOI: 10.1385/ENDO:26:1:041
Erickson LA, Jin L, Wolan PC, Tromson GB, Heerden JV, Lloyd RV. Expression of p27(kip1) and Ki-67 in benign and malignant thyroid tumors. Mod Pathol. 1998;11(2):169-74.
Temmim L, Ebraheem AK, Baker H, Sinowatz F. Cyclin D1 Protein Expression in Human Thyroid gland and Thyroid Cancer. Anatomia, Histologia, Embryologia. 2006 Apr;35(2):125–29. DOI: 10.1111/j.1439-0264.2005.00648.x.
Jung CK, Kang YG, Bae JS, Lim DJ, Choi YJ, Lee KY. Unique patterns of tumor growth related with the risk of lymph node metastasis in papillary thyroid carcinoma. Mod Pathol. 2010;23(9):1201-8. DOI: 10.1038/modpathol.2010.116
Londero SC, Godballe C, Krogdahl A, Bastholt L, Specht L, Sorensen CH, et al. Papillary microcarcinoma of the thyroid gland: Is the immunohistochemical expression of cyclin D1 or galectin-3 in primary tumour an indicator of metastatic disease? Acta Oncol. 2008;47(3):451–7. DOI: 10.1080/02841860701630242
Muro-Cacho CA, Holt T, Klotch D, Mora L, Livingston S, Futran N. Cyclin D1 Expression as a Prognostic Parameter in Papillary Carcinoma of the Thyroid. Otolaryngol Head Neck Surg. 1999;120(2):200-7. DOI: 10.1016/S0194-5998(99)70407-9.
Wang S, Wuu J, Savas L, Patwardhan N, Khan A. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum Pathol. 1998;29(11):1304–9. DOI: 10.1016/s0046-8177(98)90262-3.
Amin MB, Greene F, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93-9. DOI: 10.3322/caac.21388
Mekel M, Nucera C, Hodin RA, Parangi S. Surgical implications of B-RafV600E mutation in fine-needle aspiration of thyroid nodules. Am J Surg. 2010;200(1). DOI: 10.1016/j.amjsurg.2009.08.029.
Nucera C, Pontecorvi A. Clinical outcome, role of BRAFV600E, and molecular pathways in papillary thyroid microcarcinoma: Is it an indolent cancer or an early stage of papillary thyroid cancer? Front Endocrinol (Lausanne). 2012;3:33. DOI: 10.3389/fendo.2012.00033
Teshima M, Tokita K, Ryo E, Matsumoto F, Kondo M, Ikegami Y, et al. Clinical impact of a cytological screening system using cyclin D1 immunostaining and genomic analysis for the diagnosis of thyroid nodules. BMC Cancer. 2019;18;19(1):245. DOI: 10.1186/s12885-019-5452-4